Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 77(Pt 10): 1336-1345, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605435

RESUMO

Multicopper oxidases (MCOs) represent a diverse family of enzymes that catalyze the oxidation of either an organic or a metal substrate with concomitant reduction of dioxygen to water. These enzymes contain variable numbers of cupredoxin domains, two, three or six per subunit, and rely on four copper ions, a single type I copper and three additional copper ions organized in a trinuclear cluster (TNC), with one type II and two type III copper ions, to catalyze the reaction. Here, two crystal structures and the enzymatic characterization of Marinithermus hydrothermalis MCO, a two-domain enzyme, are reported. This enzyme decolorizes Congo Red dye at 70°C in the presence of high halide concentrations and may therefore be useful in the detoxification of industrial waste that contains dyes. In two distinct crystal structures, MhMCO forms the trimers seen in other two-domain MCOs, but differs from these enzymes in that four trimers interact to create a dodecamer. This dodecamer of MhMCO forms a closed ball-like structure and has implications for the sequestration of bound divalent metal ions as well as substrate accessibility. In each subunit of the dodecameric structures, a Trp residue, Trp351, located between the type I and TNC sites exists in two distinct conformations, consistent with a potential role in facilitating electron transfer in the enzyme.


Assuntos
Bactérias/enzimologia , Cobre/metabolismo , Lacase/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
2.
IUCrJ ; 6(Pt 3): 412-425, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31098022

RESUMO

Since the first successful serial crystallography (SX) experiment at a synchrotron radiation source, the popularity of this approach has continued to grow showing that third-generation synchrotrons can be viable alternatives to scarce X-ray free-electron laser sources. Synchrotron radiation flux may be increased ∼100 times by a moderate increase in the bandwidth ('pink beam' conditions) at some cost to data analysis complexity. Here, we report the first high-viscosity injector-based pink-beam SX experiments. The structures of proteinase K (PK) and A2A adenosine receptor (A2AAR) were determined to resolutions of 1.8 and 4.2 Šusing 4 and 24 consecutive 100 ps X-ray pulse exposures, respectively. Strong PK data were processed using existing Laue approaches, while weaker A2AAR data required an alternative data-processing strategy. This demonstration of the feasibility presents new opportunities for time-resolved experiments with microcrystals to study structural changes in real time at pink-beam synchrotron beamlines worldwide.

3.
IUCrJ ; 5(Pt 3): 238-246, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29755741

RESUMO

With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallo-graphy with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. The method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data sets from synchrotron microdiffraction beamlines.

4.
Nat Protoc ; 13(2): 260-292, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29300389

RESUMO

Protein crystallography has significantly advanced in recent years, with in situ data collection, in which crystals are placed in the X-ray beam within their growth medium, being a major point of focus. In situ methods eliminate the need to harvest crystals, a previously unavoidable drawback, particularly for often small membrane-protein crystals. Here, we present a protocol for the high-throughput in situ X-ray screening of and data collection from soluble and membrane-protein crystals at room temperature (20-25°C) and under cryogenic conditions. The Mylar in situ method uses Mylar-based film sandwich plates that are inexpensive, easy to make, and compatible with automated imaging, and that show very low background scattering. They support crystallization in microbatch and vapor-diffusion modes, as well as in lipidic cubic phases (LCPs). A set of 3D-printed holders for differently sized patches of Mylar sandwich films makes the method robust and versatile, allows for storage and shipping of crystals, and enables automated mounting at synchrotrons, as well as goniometer-based screening and data collection. The protocol covers preparation of in situ plates and setup of crystallization trials; 3D printing and assembly of holders; opening of plates, isolation of film patches containing crystals, and loading them onto holders; basic screening and data-collection guidelines; and unloading of holders, as well as reuse and recycling of them. In situ plates are prepared and assembled in 1 h; holders are 3D-printed and assembled in ≤90 min; and an in situ plate is opened, and a film patch containing crystals is isolated and loaded onto a holder in 5 min.


Assuntos
Cristalografia por Raios X/métodos , Ensaios de Triagem em Larga Escala/métodos , Cristalização , Coleta de Dados , Ensaios de Triagem em Larga Escala/instrumentação , Lipídeos , Proteínas de Membrana/análise , Polietilenotereftalatos/química , Proteínas/química , Temperatura , Raios X
5.
IUCrJ ; 4(Pt 4): 439-454, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875031

RESUMO

Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Šresolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.

6.
Methods Mol Biol ; 1607: 143-164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28573572

RESUMO

Macromolecular crystallography has advanced from using macroscopic crystals, which might be >1 mm on a side, to crystals that are essentially invisible to the naked eye, or even under a standard laboratory microscope. As crystallography requires recognizing crystals when they are produced, and then placing them in an X-ray, electron, or neutron beam, this provides challenges, particularly in the case of advanced X-ray sources, where beams have very small cross sections and crystals may be vanishingly small. Methods for visualizing crystals are reviewed here, and examples of different types of cases are presented, including: standard crystals, crystals grown in mesophase, in situ crystallography, and crystals grown for X-ray Free Electron Laser or Micro Electron Diffraction experiments. As most techniques have limitations, it is desirable to have a range of complementary techniques available to identify and locate crystals. Ideally, a given technique should not cause sample damage, but sometimes it is necessary to use techniques where damage can only be minimized. For extreme circumstances, the act of probing location may be coincident with collecting X-ray diffraction data. Future challenges and directions are also discussed.


Assuntos
Cristalização/métodos , Elétrons , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imagem Óptica/métodos , Proteínas/ultraestrutura , Espectrometria de Fluorescência/métodos , Lasers , Microscopia Eletrônica , Imagem Óptica/instrumentação , Proteínas/química , Espectrometria de Fluorescência/instrumentação , Síncrotrons , Difração de Raios X
7.
Acta Crystallogr D Struct Biol ; 72(Pt 5): 603-15, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27139624

RESUMO

The crystallization of protein samples remains the most significant challenge in structure determination by X-ray crystallography. Here, the effectiveness of transmission electron microscopy (TEM) analysis to aid in the crystallization of biological macromolecules is demonstrated. It was found that the presence of well ordered lattices with higher order Bragg spots, revealed by Fourier analysis of TEM images, is a good predictor of diffraction-quality crystals. Moreover, the use of TEM allowed (i) comparison of lattice quality among crystals from different conditions in crystallization screens; (ii) the detection of crystal pathologies that could contribute to poor X-ray diffraction, including crystal lattice defects, anisotropic diffraction and crystal contamination by heavy protein aggregates and nanocrystal nuclei; (iii) the qualitative estimation of crystal solvent content to explore the effect of lattice dehydration on diffraction and (iv) the selection of high-quality crystal fragments for microseeding experiments to generate reproducibly larger sized crystals. Applications to X-ray free-electron laser (XFEL) and micro-electron diffraction (microED) experiments are also discussed.


Assuntos
Cristalização/métodos , Microscopia Eletrônica de Transmissão/métodos , Proteínas/química , Elétrons , Lasers , Nanopartículas/química , Nanopartículas/ultraestrutura , Proteínas/ultraestrutura
8.
Cryst Growth Des ; 16(11): 6318-6326, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28261000

RESUMO

In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometer-based X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble and membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.

9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 1987-97, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457423

RESUMO

Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10-15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.


Assuntos
Cristalografia por Raios X/instrumentação , Muramidase/química , Compostos de Silício/química , Animais , Galinhas , Cristalização/instrumentação , Desenho de Equipamento , Interações Hidrofóbicas e Hidrofílicas , Luz
10.
J Appl Crystallogr ; 47(Pt 6): 1992-1999, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484844

RESUMO

The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.

11.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2719-29, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286855

RESUMO

An emergent challenge in macromolecular crystallography is the identification of the substructure from native anomalous scatterers in crystals that diffract to low to moderate resolution. Increasing the multiplicity of data sets has been shown to make previously intractable phasing problems solvable and to increase the useful resolution in model refinement. For the West Nile virus nonstructural protein 1 (NS1), a protein of novel fold, the utility of exceptionally high multiplicity data is demonstrated both in solving the crystal structure from the anomalous scattering of the native S atoms and in extending the useful limits of resolution during refinement. A high-multiplicity data set from 18 crystals had sufficient anomalous signal to identify sulfur sites using data to 5.2 Šresolution. Phases calculated to 4.5 Šresolution and extended to 3.0 Šresolution were of sufficient quality for automated building of three-quarters of the final structure. Crystallographic refinement to 2.9 Šresolution proceeded smoothly, justifying the increase in resolution that was made possible by combining multiple data sets. The identification and exclusion of data from outlier crystals is shown to result in more robust substructure determination.


Assuntos
Modelos Moleculares , Proteínas não Estruturais Virais/química , Cristalografia por Raios X , Conformação Proteica , Software , Proteínas não Estruturais Virais/genética
12.
Science ; 343(6173): 881-5, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24505133

RESUMO

Flaviviruses, the human pathogens responsible for dengue fever, West Nile fever, tick-borne encephalitis, and yellow fever, are endemic in tropical and temperate parts of the world. The flavivirus nonstructural protein 1 (NS1) functions in genome replication as an intracellular dimer and in immune system evasion as a secreted hexamer. We report crystal structures for full-length, glycosylated NS1 from West Nile and dengue viruses. The NS1 hexamer in crystal structures is similar to a solution hexamer visualized by single-particle electron microscopy. Recombinant NS1 binds to lipid bilayers and remodels large liposomes into lipoprotein nanoparticles. The NS1 structures reveal distinct domains for membrane association of the dimer and interactions with the immune system and are a basis for elucidating the molecular mechanism of NS1 function.


Assuntos
Membrana Celular/virologia , Sistema Imunitário/virologia , Proteínas não Estruturais Virais/química , Membrana Celular/química , Cristalografia por Raios X , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/imunologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Sistema Imunitário/química , Imunidade Inata , Bicamadas Lipídicas , Microscopia Eletrônica , Conformação Proteica , Multimerização Proteica , Receptores Imunológicos , Proteínas não Estruturais Virais/imunologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-25383086

RESUMO

GM/CA at the APS has developed microcrystallography capabilities for structural biology applications. The robust, quad, mini-beam collimators, which enable users to rapidly select between a 5, 10 or 20 micron diameter beam or a scatter guard for the full focused beam, are coupled with several powerful automated software tools that are built into the beamline control system JBluIce-EPICS. Recent successes at beamlines around the world in solving structures from microcrystals (2 - 10 microns) have led to increased demand for high-intensity micro-focus beams. We have designed a new micro-focus endstation to increase the intensity in mini- and micro-beams at GM/CA by one to two orders of magnitude to meet this growing demand. The new optical design is based on the well-established approach of using two-stage demagnification. The existing bimorph mirrors, arranged in a Kirkpatrick-Baez geometry, focus the beam onto slits located upstream of the sample whereby the slit aperture defines a secondary source, that is reimaged with a second pair of mirrors. This design incorporates two focal modes: a mini-beam mode where the beam is focused to 20-micron diameter and a micro-beam mode where it is focused to 5-microns. The size of the secondary source aperture can be varied rapidly (seconds) to adjust the beam size at the sample position in two ranges 20 - 3 micron and 5 - 1 micron. The second set of mirrors will each have two super polished ellipses allowing quick (minutes) interchange between modes.

14.
J Appl Crystallogr ; 44(Pt 4): 772-778, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21808424

RESUMO

This paper reports on several developments of X-ray fluorescence techniques for macromolecular crystallography recently implemented at the National Institute of General Medical Sciences and National Cancer Institute beamlines at the Advanced Photon Source. These include (i) three-band on-the-fly energy scanning around absorption edges with adaptive positioning of the fine-step band calculated from a coarse pass; (ii) on-the-fly X-ray fluorescence rastering over rectangular domains for locating small and invisible crystals with a shuttle-scanning option for increased speed; (iii) fluorescence rastering over user-specified multi-segmented polygons; and (iv) automatic signal optimization for reduced radiation damage of samples.

15.
J Synchrotron Radiat ; 18(Pt 5): 717-22, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21862850

RESUMO

Automated scanning capabilities have been added to the data acquisition software, JBluIce-EPICS, at the National Institute of General Medical Sciences and the National Cancer Institute Collaborative Access Team (GM/CA CAT) at the Advanced Photon Source. A `raster' feature enables sample centering via diffraction scanning over two-dimensional grids of simple rectangular or complex polygonal shape. The feature is used to locate crystals that are optically invisible owing to their small size or are visually obfuscated owing to properties of the sample mount. The raster feature is also used to identify the best-diffracting regions of large inhomogeneous crystals. Low-dose diffraction images taken at grid positions are automatically processed in real time to provide a quick quality ranking of potential data-collection sites. A `vector collect' feature mitigates the effects of radiation damage by scanning the sample along a user-defined three-dimensional vector during data collection to maximize the use of the crystal volume and the quality of the collected data. These features are integrated into the JBluIce-EPICS data acquisition software developed at GM/CA CAT where they are used in combination with a robust mini-beam of rapidly changeable diameter from 5 µm to 20 µm. The powerful software-hardware combination is being applied to challenging problems in structural biology.


Assuntos
Automação Laboratorial/métodos , Cristalografia por Raios X/métodos , Substâncias Macromoleculares/efeitos da radiação , Algoritmos , Substâncias Macromoleculares/química , Software , Síncrotrons , Difração de Raios X/métodos
16.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 3): 176-88, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21358048

RESUMO

The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography.


Assuntos
Cristalografia por Raios X/métodos , Cristalografia por Raios X/instrumentação , Software
17.
FEBS J ; 278(11): 1818-29, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21375693

RESUMO

Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G(s)α to C2 and the ensuing 7° rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.


Assuntos
Guanilato Ciclase/metabolismo , Estrutura Molecular , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Peptídeos Natriuréticos/química , Peptídeos Natriuréticos/metabolismo , Conformação Proteica , Ratos , Receptores do Fator Natriurético Atrial/química , Homologia de Sequência de Aminoácidos
18.
Glycobiology ; 20(12): 1643-53, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20826825

RESUMO

The Maclura pomifera agglutinin (MPA) recognizes the T-antigen disaccharide Galß1,3GalNAc mainly through interaction of the α-GalNAc moiety with its primary site, but the interactions of the two flanking subsites A and B with aglycones and substituents other than Gal, respectively, are not well understood. We therefore characterized the specificity of MPA in more detail by glycan microarray analysis and determined the crystal structures of MPA without ligand and in complexes with Galß1,3GalNAc and p-nitrophenyl α-GalNAc. In both sugar complexes, pairs of ligands created inter-tetramer hydrogen-bond bridging networks. While subsite A showed increased affinity for hydrophobic aglycones, it also accommodated several sugar substituents. Notably, a GalNAc-O-tripeptide, a Tn-antigen mimic, showed lower affinity than these compounds in surface plasmon resonance (SPR) experiments. The glycan array data that showed subsite B accepted compounds in which the O3 position of the GalNAc was substituted with various sugars other than Gal, but substitutions at O6 led to inactivity. Additions to the Gal moiety of the disaccharide also had only small effects on reactivity. These results are all compatible with the features seen in the crystal structures.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Dissacarídeos/química , Maclura/química , Lectinas de Plantas/química , Sítios de Ligação , Cristalografia por Raios X , Maclura/genética , Lectinas de Plantas/genética , Relação Estrutura-Atividade
19.
Protein Sci ; 19(3): 544-57, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20066666

RESUMO

The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.


Assuntos
Fator Natriurético Atrial/química , Cloretos/química , Sequência Conservada , Receptores do Fator Natriurético Atrial/química , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica
20.
Proc Natl Acad Sci U S A ; 106(23): 9138-43, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19497877

RESUMO

Nematode parasitism is a worldwide health problem resulting in malnutrition and morbidity in over 1 billion people. The molecular mechanisms governing infection are poorly understood. Here, we report that an evolutionarily conserved nuclear hormone receptor signaling pathway governs development of the stage 3 infective larvae (iL3) in several nematode parasites, including Strongyloides stercoralis, Ancylostoma spp., and Necator americanus. As in the free-living Caenorhabditis elegans, steroid hormone-like dafachronic acids induced recovery of the dauer-like iL3 in parasitic nematodes by activating orthologs of the nuclear receptor DAF-12. Moreover, administration of dafachronic acid markedly reduced the pathogenic iL3 population in S. stercoralis, indicating the potential use of DAF-12 ligands to treat disseminated strongyloidiasis. To understand the pharmacology of targeting DAF-12, we solved the 3-dimensional structure of the S. stercoralis DAF-12 ligand-binding domain cocrystallized with dafachronic acids. These results reveal the molecular basis for DAF-12 ligand binding and identify nuclear receptors as unique therapeutic targets in parasitic nematodes.


Assuntos
Ancylostoma/metabolismo , Necator americanus/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Infecções por Strongylida/parasitologia , Strongyloides stercoralis/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Colestenos/metabolismo , Cristalografia por Raios X , Humanos , Larva , Modelos Moleculares , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Esteroides/metabolismo , Infecções por Strongylida/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...